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A new type of Hopf algebra which is neither commutative 
nor cocommutative 
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t CCAST (World Laboratory), PO Box 8730, Beijing 100080, People's Republic of China 
$ Department of Mathematics, Peking University, Beijing 100871, People's Republic Of 

China 
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Abstract. I n  this paper a new determinant-cofactor method is used to impose the crucial 
constraints on the entries of the multiparametric R-matrices mentioned by Yu I Manin. 
We obtain the quotient Hapf algebras from the YBZF algebras which are defined by the 
restricted R-matrices. A subclass of algebra with the q-parameter is also discussed. 

J Frohlich discussed the dual algebra relations in [Z]. In the present paper, we define 
and investigate a new type of Hopf algebra, which generalizes the dual algebra relations 
to the multiparametric deformations of the general linear groups. 

Although the R-matrices used in this paper were mentioned by Yu I Manin in [l], 
we obtain the crucial constraints on the entries of the R-matrices in order to construct 
the new type of quantum groups. Yu I Manin gave the abstract definition of the 
quantum determinant in [l]. However, we introduce the interesting determinant- 
cofactor method to obtain the explicit forms of the quantum determinant and antipodal 
map in our cases. 

A special subclass of algebra with the q-parameter, discussed in this paper, provides 
a new member of compact matrix pseudogroups, which were proposed by Woronowicz 
in [3,4]. 

First, we briefly review some basic iacts of the 'Y'ang-Baxter-Zamoiochikov- 
Faddeev (YBZF) algebras of R-matrices (cf [5-7]): 

(i) The R-matrix. Let K be a field. A matrix R E  gl(nz, K), for some n E N, is called 
a R-matrix if R satisfies the Yang-Baxter equation, 

(1) ~ ( 1 2 ) ~ ( 2 3 ) ~ i 1 2 )  = ~ ' 2 3 1 ~ i l 2 ) ~ ' 2 3 )  

(ii) The YBLF algebra of an R-matrix. Let R E  g1(n2, K )  be an R-matrix. The YBZF 

algebra dR of R is defined as 

dR K (  c,l i, j = 1,2, . . . , n)/ K (R . TO T - T O  T .  R ) .  (2) 
(iii) The YBZF algebra of an R-matrix is a bialgebra. 
(a )  The coproduct A :  dR -P .d,OdR is a homomorphism which satisfies 

A ( K j ) =  L O T ,  A(e)=eOe .  (3) 
k = l  
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( b )  The co-unit E : 99, + K is a homomorphism which satisfies 

E (  rj) 6 g  E ( e )  = 1. (4) 

It is well known that the quotient algebras of the YBZF algebras of the R-matrices 
discussed by Manin, Drinfeld and others (cf [l ,  61) are Hopf algebras which are called 
quantum groups. 

In this paper, we investigate another type of R-matrix, which was mentioned by 
Manin in Ell. We then introduce the interesting determinant-cofactor method to obtain 
the crucial constraints on the entries of the R-matrices in order to construct the new 
quantum groups from the YBZF algebras. 

Proposition 1. Let A E gl( n, K )  and suppose that RA E gl( n2,  K )  satisfies 

!R& = g&f8jk vi,;, k, l =  !, 2, I I I ,  ??I ( 5 )  

Then RA is a R-matrix. 

Proof: One can prove proposition 1 after a direct calculation. 0 

Corollary 2. If A E  gl(n, K )  and for all i, j ,  a, # 0,  where a, is the (i, j )  entry of the 
matrix A, then the generators {rj,li, j =  1,2, .  . . , n }  of the YBZF algebra d,, of RA 
satisfy at least the following relations: 

TjTk, = Tk, rj Vi , j ,  k, l = l , 2 , .  . . , n. ( 6 )  
aki  

Prooj By the definition of RA and d,,, ihe reiaiions (6j foiiow from a direci caicuia- 
tion. 0 

Remark If one suppose that rjTk, # 0, for all i, j ,  k, I ,  then one must have a,ait = 
constant # 0, for all i, j .  For convenience, we now let a,ajj = 1, for all i, j .  In particular, 
if the field K is the complex field C, then we have ai; = 1 or ajj = -1. The exact choice 
of a,, will be determined in theorem 4 and the remark thereafter. 

In order to construct the quotient Hopf algebra of dn, we must define the antipodal 
map S: dR + dR, which is an antihomomorphism satisfying 

T. S( T )  = S( T )  T = elvxn.  (7) 

We see that the definition of the antipode S is to get the inverse matrix T - !  of ihe 
&,-valued matrix T = ( rj)nxn. As we know, the standard method to obtain the inverse 
matrix B-' of the number-valued matrix B is to calculate the adjoint matrix of B in 
terms of the determinant and the algebraic cofactors of B. Hence, it is natural for us 
to generalize the concepts and methods of determinant and algebraic cofactors in our 
cases. 

Dejinition 3. (The row determinant and the column determinant of the d,,-valued 
matrices.) Suppose that A E gl( n, K )  satisfies 

a..a. 'I ,I = 1 a. .  = 1 V i , j = l , 2  ,..., n. (8) 
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Let dn, he the YBZF algebra of R ,  and { Tvli, j = 1,2,. . . , n} be the generators of 99,. 
Now we define the two sets of the dR,-valued matrices as 

.PP~!6{B~gl (n ,s i~ , ) Ieach row of B is (&,, Z, ,..., Tjn) for some i) 
d ~ ~ d { B ~ g l ( n , s i ~ ~ ) ( e a c h  column of B is ( T , j ,  T Z j , .  . . , T n j )  for some j ]  

and let 

(9) 

if i < j  
if i 2 j. ' I' 6;. d 

a, 
Moreover, we define the row determinant det' and the column determinant det' of 
B E  and B'E d$i, respectively, as follows: 

(i) For B E  si$:, we define the row determinant of B as 

det'B4 L sgn(u)ar(u)BIm(,). . . BM.) 

a , ( d P  n &(i)m(j l .  (12) 

(11) 
CES" 

where B = ( B g ) n x n ,  S. is the nth permutation group and a,(u) is defined as 

i c; 

(ii) For B ' E S & ~ ~  we define the column determinant of E' as 

det'B'6 1 sgn(u)a,(u)B&,, . . . E',,,,, (13) 
CCS" 

where E'=  and a.(u) is defined as the inverse of ar(u),  i.e. 

a,(u)  ar(u.)-'. (14) 

Remark For all U €  S., the set {( i, j )  I i < j ,  u( i )  > u ( j ) }  is the set of the reversed-order 
pairs of U. By the definition of ar(u)  and a,(.), we see that the row determinant and 
the column determinant express the reversed-order action of the permutation U E  S.. 

Theorem 4. (The properties of the row determinant and the column determinant.) 
Suppose that A E gl(n, K )  satisfies (8). Then 

(15) (i)  a . . ( . .  'I I' = a.. I' v i , j = i , 2  ,..., n. 
(ii) I f f o r B e d $ ! , t h e k t h r o w a n d t h e ( k + l ) t h r o w o f  Bare  ( T I ,  . . . ,  Tn)and  

(T,,, , , , , qn) for some i, j respectively, and Li denotes the matrix given by exchanging 
the kth row and the ( k +  1)th row of E, then 

det' = -aJi det' B. (16) 
In particular, if i = j, i.e. B has equal neighbouring rows, then det' B = 0. Moreover, 
if B has equal rows, then det' B = 0. 

(iii) IfforB'~.PP~~,thekthcolumnandthe(k+l)thcolumnofB'are(T,; ,..., Tni) 
and (TI,, . , . , Tnj) for some i, j respectively. and L? denotes the matrix given by 
exchanging the kth column and the (k+l) th  column of E', then 

- - . .. 

- 
derC E' = -a ,  def E'. (!?) 

In particular, if i = j, i.e. B' has equal neighbouring columns, then det' B = 0. Moreover, 
if E' has equal columns, then det' B ' = O .  

(iv) TEd$:n.PPg: and 

det' T =  det' T (18) 
where 7 = ( &i)Gxn is the generator matrix of d~~ 



X B I V Y I ) .  . , Bwck)B(xxl)o ' (x+l )  ... B n v ~ n )  

= -aji det' B. 

In particular, if i = j ,  then we get det' B = 0 by aij = 1 and l? = B. Hence, if B has two 
equal rows, then we prove that det' B = O  by identity (16). 

(iii) The proof of (17) is similar to that of (16). 
(iv) For all U E S., we get 

Thus we obtain 
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i.e. 

ac(4Tv( l ) l  . . . Tv(nln = 4 f 1 ) T l m - y l ) .  . . TnO-ynl 

for all U E S.. This implies at once that det' T = det' T. 

Remark In the proof of (2) in theorem 4, the exact choice of aii guarantees that 
det'B(det'B'=O) if B (B') has two equal rows (columns). 

DeJinirion 5. (The determinant and the algebraic cofactors of the generator-matrix T 
of dR,.) Suppose that d ~ g l ( n ,  K )  satisfies (8). Then 

(i) The determinant of T is defined as 

det T P  sgn(~)a . (dT l , ( l ) .  . . T,,,,) 
..=S. 

= 1 sgn(~)aAU.)T,(,), . . . TC(")". (19) 
OSS. 

(ii) Four types of algebraic cofactors of T are defined as follows: 
(a) The left-row algebraic cofactor of T, is defined as 

r(I)=, 

where f', denotes 7;, deleted in (20). 
( b )  The right-row algebraic cofactor of T, is defined as 

( e )  The left-column algebraic cofactor of Tj is defined as 

(d)  The right-column algebraic cofactor of Tj is 

AE,R(7;j)A 1 sgn(u)a,(u)( fr  ") T,( , )  ,... f v . . .  Tr(")". (23) 
-S". k = j + l  a v ( k ) <  

d j 1 - i  

Theorem 6. (The properties of determinant and algebraic cofactors of T.) Suppose 
that A ~ g l ( n ,  K )  satisfies (8). Then, for all iJ :  
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(iii) x TikA',L( qk) = Se det T 

A'.R( T k )  T,, = 8, det T 

x T k , f l L (  Tkj) = 8, det T 

k = I  

k-I  

k = I  

Proof: (i) It follows from (6) and the definition of det T that identity (24) holds. 
(ii) For all n e  S,, we get 

a b ( k )  a j m l k )  a j d i )  
i-1 f I n , , = i % M = n L  fI _ _  

n-  ir 

k=L a;& k = l  a. k - 1  n,l, k - i t l  a;* ajj 

If u( i )  = j, then we obtain 
i-1 

k = l  nix k = I  ail, k = i + l  aki 
% fI -j 

With the definition of algebraic cofactors, this implies (25) immediately. 
(iii) By (ii) and (iii) in theorem 4, we get (26) after a direct calculation. 

Corollary 7. Suppose that Aegl(n, K )  satisfies (8) and 

V i , j = 1 , 2  ,..., n, " a k i  

k = I  akj 
n -=1 

Then: 

(i) rj det T = det TTj V i , j = l , 2 , . .  ., n. 

(ii) r j )  = T j )  AC'R( T j )  = A"L( T j )  

Theorem 8. Suppose that A E gl( n, K )  satisfies 

V i , j = l , 2  ,..., n. (30) " ax; &a.. = 1 a.. = 1 n - = I  
k = l  nkj 'I I' 

Then: 

6 )  T .  A',L( T)'  = flR( T)' . T 
= A',R( T) . T' = T' . AC,L( T )  

= (det TUnxn (31) 

where f denotes the transpose of the matrix. In particular, if det T has an inverse 
element in d,=, then 

(32) 

(ii) Ar.L(r,)ar,L( Tk,) =9 A'.L(Tk,)A'.L(rj) Vi, j, k, I =  1,2,. . . , n. (33) 

A'.L( T) = A',R( T) = flL( T )  = T ) .  

a k i  
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(iii) Let d dR,/K(det T - e) be the quotient algebra of the YBZF algebra d~,. 
Then d is a Hopf algebra whose antipodal map S : d + d  is an antihomomorphism 
which satisfies 

S(e) = e S( TJ)  = A y  TJ. (34) 

In particular, S2= id. 

Roo$ (i) it follows from (iii) in theorem 6(iii) that identity (31) holds. By (28) and 
det T's being inverse in d,,, we get (32). 

(ii) Since for all i, j, p, g, 

we get 
1 A 

Tic(,) . . .  T j , . .  Tno~n)Tiryi) . . .  Tkl.. .  T n m , ( m )  

.. -- - T1,yi). . . T k , .  . . T n c , ( n ~ T i c ( ~ ) .  . . T,. . . T,,(.i 
aki 

&, By the definiiion of for aii p, ieft-tow aig&raic cofactor of r,, we 
obtain (33). 

(iii) Identities (26), (28), (32) and (33) imply that the quotient algebra d is a 
bialgebra and the extension of antihomomorphism S in (34) is the antipodal map of 
d. Hence d is a Hopf algebra whose antipode is S. In particular, we get S2 = id by 
(34) and (31). 

Remark. (i) The quantum space A"" and the Frobenius space A"" (the dual of the 
quantum space A"" of the quantum group d) are defined as: 

A"''= K ( v , ,  u 2 , .  . . , v.) /K(v;uj-aj jv ,~~) I 
\ and 

Aai" = K ( 5 1 , 5 2 ,  .... 5 ~ n ) l K ( M + a s E ~ ~ ,  5:) 
respectively. By the abstract definition of quantum determinant in [l], we also 
obtain (19). ' 

(ii) The comodule 7 of dn, on A"" is defined as 

7: Anlo + AnlO@dR,  

0,- Vk@Tk,. 
k = I  

It is easy to prove that r is an algebraic homomorphism 

Proposition 9. (The special subclass with q-parameter.) Let K be a field. For all 
q f - O E K  and for all n c N ,  suppose that A(q)EgI(Zn+l ,K)  satisfies 

A q"""-'"-l"-"I (35) 

where sgn is the sign function of integers. Then A(q) satisfies (30). 
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Theorem 10. (A new member of compact matrix pseudogroups.) Let C be the complex 
field. Suppose that q is a non-zero real number. For all n E N, let A(q)  E gl(2n + 1, C) 
be defined as (35). Then the quotient Hopf algebra Saq of the YBZF algebra SaRAcq, of 
the R-matrix RA(,, is a Hopf-* algebra. In particular: 

(i) The map *: is an anti-involution of 

*(TA 0 T 4 4 j )  (36) 

where the permutation o E S,,,, IS defined as 

o ( i ) a 2 n + 2 - i  Vi= 1,2,. . . , 2 n  + 1.  (37) 

(ii) The map * is compatible with the Hopf algebras structure of Sa9. Moreover, 
the Hopf algebra Sa, equipped with the map * is a Hopf-* algebra. 

Roo$ (i) Since we get 

a,(Oo(j) = aji 

where o is defined as (37), then we have 

By sgn(o 0 U 0 o) = sgn(u) and a,(o 0 U 0 o) = q(u) ,  we then obtain *(det T )  = det T. 
Moreover, by the definition of the map * on [ Z j  I i, j = 1,2,. . . , 2n+ 1) as (36), we 
extend the map * to an anti-involution of .dRAcq,. 

(ii) We see from the definition of .dRA,*] in theorem 8 and (38) that the map * is 
compatible with the Hopf algebra structure of d9. Thus the Hopf algebra Sa9 equipped 

0 

Remark. Theorem 10 shows that Sa,, is a new member in the category of the compact 
matrix pseudogroups (cf [3,4]). The concept of the corresponding non-commutative 
differential geometry is of interest for further investigation. 

with the map * is a Hopf-* algebra. 
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